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This paper describes a method for a rank-based analysis of data for competitive

usability evaluation. The

studies. In a scenario-based study, participants a

technique works with data collected during scenario-based usability
re asked to perform realistic tasks (scenarios)

with products. Dependent measures commonly include such variables as time-on-task,
successful task completion rates, and subjective ratings, reported at the scenario level
Scenario-based studies are sometimes used to set benchmarks or testable behavioral
objectives for products. Multivariate statistics such as discriminant analysis can be used with
raw data to determine if one product differs from another on the basis of patterns of dependent
variables; however, multivariate statistics cannot be used to demonstrate that one product is
more usable than another if the designs are based on different usability tradeoffs, Converting
raw data to ranks allows the establishment of rank-weighting schemes that combine different
dependent measures and allows the assessment of relative product usabliity. The data that are
generated can be analyzed with rank statistical methods. The elimination of various types of
biases associated with missing data is also presented. This method of analyzing competitive
usability data is a mixture of the subjective and the objective. To use the method, several

subjective decisions concerning rank weighting and control of bias

es must be made before

applying the objective part of the method. Application of the method allows a single composite
number representing relative usability to be assigned to a product, simplifying product usability

comparison.

INTRODUCTION

This purpose of this paper is to describe a
method for rank-based analysis of competitive
usability data. The technigue works with data
collected during scenario-based usability studies. Ina
scenario-based study, participants are asked to
perform realistic tasks (scenarios) with products.
Dependent measures commonly include such
variables as lime-on-task, successful task completion
rates, and subjective ralings, reported at the scenario
level. Scenario-based studies are sometimes used fo
set benchmarks or testable behavioral objectives for
products (Gould, 1988; Lewis, Henry, and Mack, 1990,
Whiteside, Bennett, and Holtzblatt, 1988).

THESIS

Multivariate statistics such as discriminant
analysis (CIiff, 1987) use raw data to determine if one
product differs from another on the basis of patterns of
dependent variables. However, multivariate statistics
cannot be used to demonstrate that one product is
more usable than another if their designs are based
on different usability tradeoffs. Multivariate analysis of
usability data can show significant differences among
the products, but will probably not provide an
interpretable measure of usability. Converting raw
data to ranks, however, allows the establishment of
rank-weighting schemes that combine different
dependent measures into a single composite measure,
allowing easy comparison of relative product usability.
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Ranking addresses the guestion, "Which is the
best?” Often, a specific numerical value Is not
interpretable in this way.

For example, in professional baseball,

. relative -~ rather than absolute
performance is what counts. A baseball
team’s share of post-season monies does
not depend directly on the percentage of
games the team won. Rather, it depends on
how the team performed relative to the
other teams in the same division. . . .

If we are told that the Phillies finished
first in the National League East, we know
that they won more games than any of the
other five teams in that division; we
would not know this if we had been told,
instead, that the Phillies won 75 percent
of thelr games. On the other hand, of
course, knowing that a team finished first
doas not tell us what percent of games it
won. (Hildebrand, Laing, and Rosenthal,
1977)

In this sense, competitive usability analysis is
like a baseball league. The essential task is to identify
the most usable product after considering all of the
available data. Also, because the data gathered in
usability studies are usually human performance or
attitude data, little may be known about the
distributions from which the scores come, making
conversion to ranks desirable. Finally, converting raw
scores to ranks makes it possible to combine different
types of data without using multivariate procedures
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based on least-squares minimization to create
centroids, which are often difficult to interpret.

DETAILED CONCEPT DESCRIPTION

Assume that a group of producis has been
studied under similar conditions using similar
participants performing the same scenarios while
observers record the same dependent variables. The
measurements can be collapsed across participants to
create a set of matrices, one matrix per dependent
variable, with products for columns and scenarios for
rows. The raw data in each matrix can be converted
to ranks in a way similar to the Friedman rank-sum
test {Bradley, 1976; Friedman, 1937}. If raw values are
tied, the appropriate ranks can be split (as described
in Mendenhali, 1971). At this point, if desired and the
matrices are complete (no missing data), Friedman
tests can be run for each dependent variable matrix.
Multiple comparisons tests based on Friedman ranks
can also be used (Hollander and Wolfe, 1973). The
pext step is to collapse the data again over dependent
variables, obtaining a matrix of composite rank scores
arranged by product and scenario. This matrix can
also be analyzed using Friedman tests. Finally, this
matrix can be collapsed across scenarios (tasks),
resulting in a single composite rank score
representing the relative usability of products.

If, prior to data collection, decisions have been
made regarding the relative importance of scenarios
and dependent measures, this importance can be
quantified by assigning weights to scenarios and
measures. When the matrices are collapsed, the
appropriate weights can be applied to emphasize the
more important scenarios and measures. For
example, if successful scenario completion rate is
desmed fwice as Important as task time, then the
ranked scenario completion rates would be multiplied
by twice the weight applied against the ranked task
fimes.

Sometimes, due to the variety in their functional
capabilities, not all tasks can be performed on all
products. This results in matrices with missing data,
and a potential for a number of biases. These biases
can be corrected by assigning ranks to complete the
matrices, according to the following rules:

* If a task cannot be performed with a product
because the product has been designed in an
innovative way that relieves the user of the burden
of performing the task, then that product should
receive the lowest (best) rank, For example, if the
task is to change the paper-handling device on a
printer, but the printer has been designed to
accept different types of paper automatically, then
it should be credited for this innovation.
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« |f a task cannot be performed with a product
because the product does not have the functional
capability to perform the task, then that product
should receive the highest (worst) rank. For
example, if the task is to change paper-handling
devices, but the printer can only work with pinfeed
paper, then it should be penalized for this lack of
function.

+ [f a task cannot be performed with a product, but it
is not clear whether to credit or to penalize the
product, then that product should be assigned the
average rank across products for that task. For
example, if the task is to change paper-handling
devices, but the experimenter was unable to
acquire the necaessary equipment to study this task
for a particular printer, then the printer should be
neither penalized nor credited for the missing
data. The average value is determined by adding
one to the number of products and dividing this
{otal by two.

¢ If a task cannot be performed with more than one
product for the same reason, then the appropriate
ranks should be split among those products.

The method that has been described is a mixture
of the subjective and the ohjective. Severai subjective
decisions must be made before the objective part of
the procedure can be applied, such as:

« Do the tasks or dependent variables differ in
importance? If so, how should they be weighted?

* For each task with missing data, is it more
reasonable to assess a penalty for a product’s
failure to perform a task, to credit a product for an
innovative function, or simply to remove the
nroduct from comparison? These situations may
exist simultaneously in a single set of usability
data.

HYPOTHETICAL EXAMPLE 1

For this example, a number of assumptions have
been made that simplify the situation.

* Ali tasks can be performed on all products.
« All tasks are considered to be equally important.

» All dependent measurements are considered to be
equally important.

Table 1 shows the results of a hypothetical
usability study conducted with three products.
Assume a between-subjects design was used, with ten
participants per product parforming five tasks.
Assume that the values in Table 1 were averaged
across participants. For task times, a faster time is
hetter. For errors, a lower number is better. For the
satisfaction ratings, a lower number is better.
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Product A  Product B Product C
Task Raw Rank Raw Rank Raw Rank
1 8.0 3 7.2 1 7.3 2
2 7.6 2 5.3 1 8.5 13
3 6.3 2 5.2 1 7.5 3
1 4.2 3 4.0 2 3. 1
5 6.1 2 4,2 1 6.5 3
Rank Ave: 2.4 1.2 2.4

Product A Product B Product C
Task Raw PRank Raw Rank Raw Rank
1 @ 1 3 3 0.5 2
2 1 2 0 1 2 3
3 1 2.5 0 1 1 2.5
4 1 1.5 1t 1. 2 3
5 0 b 0 2 ¢ 2
Rank Ave: 1.8 1.7 2.5

Product A Product B Product C
Task Raw Rank Raw Rank Raw Rank
1 3.5 3 2.0 1.5 2.0 1.5
2 2.2 2 2.0 1 3.0 3
3 1.3 1.5 1.3 1,5 28 3
4 1.6 1.5 1,86 1.5 1.7 3
5 1.7 2 1.5 1 1.9 3
Rank Ave: 2.0 1.3 2.7
Grand Rank
Average: 2.1 1.4 2.5

Because these matrices are complete, Friedman
tests can be conducted on the ranks. Given the small
samples in this example, | have used « = .10 as the
criterion for significance. The Task Time matrix shows
a significant difference (X*(2) = 4.8, p< .10}, the
Number of Errors matrix is not significant (X2(2) = 1.9,

p=.39), and the User Satisfaction Rating matrix shows
a significant difference (X¥(2) = 4.9, p <.10}.

Table 2 shows the results of collapsing the
matrices along the dimension of task and re-ranking
the data. (It is possible to collapse along the
dimension of dependent variable, but the resulting
matrix would have order of 3 x 3, providing a smaller
set of data and, therefore, a less powerful analysis.) A
Friedman fest conductaed on tha matrix given in Table
2 is significant {(X*(2) = 6.7, p<.05).

Tahle 2. Matrices Collapsed Across Tasks
Product A Product B Product €
Rank MNew Rank New Rank New
Task Ave. Rank Ave. Rank Ave. Rank
1 2.3 3 1.8 1.5 1.8 1.5
2 2.0 2 1.6 1 3.0 3
3 2,0 2 1.2 1 2.8 3
4 2.0 2 1.7 1 2.3 3
5 2.0 2 1.3 1 2.7 3
New Rank
Averages 2.2 1.1 2.7

The new rank averages from Table 2 are the
composite rank scores that represent the relative
usability of the products. The conclusion drawn from
these results depends on which product is under
developmant. If the product under development is
Product B, then multiple comparisons can be
conducted to help the developers determine the extent
to which the product is significantly more usable than
its competiters (see Hypothetical Example 2). If the
product under development is Product C, then the
developers can examine the data from Table 1 to
prioritize their efforts to redesign the product.

HYPOTHETICAL EXAMPLE 2

A number of simplifying assumptions were made
for Hypothetical Example 4, but an effective procedure
needs to be able to deal with the foliowing real-world
problems:

* Not all tasks can be performed on all products.

¢ Different tasks may not be considered equally
important.

¢ Different dependent measurements may not be
considered equally important.

The problems of differentially important tasks and
measures can be handled by creating weighting
vectors w, for tasks and w,, for measures. Following
convention, the elements of the weighting vectors
should sum to one. The way in which the weights are
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astablished is not important for purposes of this
discussion. The weights can be arrived at by
consensus among the parties interested in the
outcome of the analysis, or by more sophisticated
methods such as the Analytical Hierarchy Process
{Saaty, 1988}). When the matrices are collapsed, the
weighting vectors are used to produce the appropriate
weighted average, For this example, assuma that
user rating is twice as important as humber of errors,
and the number of errors is twice as impaortant as task
time. Thus, w, ={.14, .29, .57) for time, errors, and
rating respectively. Also assume that Tasks 2 and 3
are three times as important as Tasks 1, 4 and 5.
Thus, .= (.113, .33,.33, .113, .113} for the five tasks.

Table 3 shows the results of a hypothetical
usability study conducted with three producis.
Assume a between-subjects design was used, with ten
participants per product performing five tasks.
Assume that the values in Table 3 were averaged
across participants. For task times, a faster time is
bettar. For errors, a lower number is better. For the
satisfaction ratings, a lower number is better. A "-"
indicates that the task could not he done with the
product. Assume that data for Product A, Task 5 could
not be collected due to a clerical error in ordering
equipment, so it receives the average rank valus
(across the row) of 2. Assume that Product B has
been designed to do Task 2 automatically, and
receives the lowest (best) rank of 1. Finally, assume
that Praduct C cannot do Task 2 at all, and is assigned
the worst (highest) rank of 3. The resulting rank
maitrices are identical to those in Example 1, although
the weighted averages are slightly different from the
unweighted averages.

As was done in Hypothetical Example 1,
Friedman tests can be applied against these matrices,
but will provide anly approximate results because
missing data points have been estimated. Also, the
Friedman procedure assumes equal welghting of the
elements in the rows of the matrices (tasks in this
case).

The effect of applying weights Is to expand or
compress the distance between the rank averages
relative to the unweighted averages. An approximate
statistical procedure that takes into account the effect
of applying weights is to use multiple comparisons
based on Friedman rank averages (Hollander and
Wolfe, 1973), but to use the weighted averages rather
than the unweighted averages. Table 4 shows the
result of multiplying the matrices in Table 3 by wp.
The matrix in Table 4 was re-ranked and multiplted by
o, to get the weighted rank averages to analyze
statistically. The results are shown in Table 5.
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Product A Product B Product C
Task Raw Rank Raw Rank Raw Rank
1 8.0 3 7.2 1 7.3 2
2 7.6 2 - 1 - 3
3 6.3 2 5.2 1 7.5 3
4 4.2 3 4.0 2 30 1
5 - 2 4.2 1 6.5 3
Rank Ave: 2.2 1.1 2.7
{Weighted)

Product A  Product B Product C
Task Raw Rank Raw Rank Raw Rank
1 0 1 3 3 8.5 2
Y 1 2 - 1 - 3
3 1 2.5 [5; 1 1 2.5
q 1 1.5 1 1.5 2 3
5 - 2 0 2 ¢] 2
Rank Ave: 2.0 1.4 2.6
(Weighted)

Product B

Task Raw Rank Raw Rank Raw Rank

1 3.5 13 2.0 1.5 2.8 1.5

2 2.2 2 - 1 - 3

3 1.3 1.5 1.3 1.5 2.6 3

4 1.0 1.5 1.8 1.5 1.7 3

5 - 2 1.5 1 1.9 3
Rank Ave: 1.9 1.3 2.8
(Weighted)
Grand Ave: 2.0 1.3 2.7
(Weighted)
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Table 4. Weighted Rank Averages
Product A Product B Product C
Rank New Rank New Rank New
Task Ave. Rank Ave. Rank Ave. Rank
1 2.42 3 1.86 2 1.71 1
2 2.06 2 1.00 1 3.0 3
3 1.86 2 1.28 1 2.85 3
4 1.71 2 1.57 1 2.72 3
5 2.00 2 1.29 1 2.7t 3
New Rank
Averages: 2.1 1.1 2.8
(Weighted)
Table 5. Results of Multiple Comparisons Tests
B (1.1) A (2.1) C (2.8)
Note: Products connected by a 1ine are not

significantly different at the .10 Tevel.
The products' final weighted rank averages
are given in parentheses.

The conclusion drawn from these results would
be the same as that for the first hypothefical example.
If the product under development is Product B, then
the developers can determine that the product is
usable relative to its competitors. To further improve
Product B relative to Product A, Product B should be
redesigned to reduce the number of errors that occur
when users perform Task 1. If the product under
development is Product C, then the developers can
examine the data from Table 3 to prioritize their efforts
to redesign the product.

DISCUSSION

After usability data have been collected on a
product, the method described in this paper can be
used to determine how the product compares to its
competitors, assuming an appropriate data base
exists. The goal for a product under development is to
receive the best composite rank score, corrected for
various biases if necessary. At any time, the data
base can be examined to determine how a product
under development has received its highest (worst)
ranks. A product developer can use this information
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to determine where an effort to modify the product
would be best made. This is important because
summary measures for multidimensional concepts
(such as these composite usability rank-averages)
always lose information relative to the entire data base
from which they are calculated. After modifications
have been made, the product could be tested again
and, if necessary, lteratively modified and tested until
the goal has been achieved. Application of the
method aflows a single composite rank-average to be
assigned to a product to represent its relative
usability, allowing easy comparison of products.
Rank-based statistical procedures can be applied at
various stages of analysis to determine if the products
are significantly different.
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